Analytical Mechanics

Exercises 1.9-1.16

(Exercise descriptions [with possible slight modifications] from Analytical Mechanics by Fowles and Cassiday, 7th International Student Edition. Solutions by: Waves and Tensors)

Exercise 1.9: Prove the vector identity $\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = \mathbf{B}(\mathbf{A} \cdot \mathbf{C}) - \mathbf{C}(\mathbf{A} \cdot \mathbf{B}).$

Solution:

According to (1.5.1): $\mathbf{B} \times \mathbf{C} = (B_y C_z - B_z C_y, B_z C_x - B_x C_z, B_x C_y - B_y C_x)$ Thus:

$$
\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = (A_y(B_xC_y - B_yC_x) - A_z(B_zC_x - B_xC_z),\n A_z(B_yC_z - B_zC_y) - A_x(B_xC_y - B_yC_x),\n A_x(B_zC_x - B_xC_z) - A_y(B_yC_z - B_zC_y))\n= (A_yB_xC_y - A_yB_yC_x - A_zB_zC_x - A_zB_xC_z,\n A_zB_yC_z - A_zB_zC_y - A_xB_xC_y - A_xB_yC_x,\n A_xB_zC_x - A_xB_xC_z - A_yB_yC_z - A_yB_zC_y)\n= ((A_xC_x + A_yC_y + A_zC_z)B_x - (A_xB_x + A_yB_y + A_zB_z)C_x,\n (A_xC_x + A_yC_y + A_zC_z)B_y - (A_xB_x + A_yB_y + A_zB_z)C_y,\n (A_xC_x + A_yC_y + A_zC_z)B_z - (A_xB_x + A_yB_y + A_zB_z)C_z)\n= (\mathbf{A} \cdot \mathbf{C})\mathbf{B} - (\mathbf{A} \cdot \mathbf{B})\mathbf{C}\n= \mathbf{B}(\mathbf{A} \cdot \mathbf{C}) - \mathbf{C}(\mathbf{A} \cdot \mathbf{B}).
$$

Exercise 1.10: Two vectors A and B represent concurrent sides of a parallelogram. Show that the area of the parallelogram is equal to $|\mathbf{A} \times \mathbf{B}|$.

Solution:

The area of the parallelogram is $A = |A| \cdot h$. For the situation in the picture: $h = |\mathbf{B}|\sin\theta$, where $\theta = \angle(\mathbf{A}, \mathbf{B})$. Thus $A = |\mathbf{A}||\mathbf{B}|\sin\theta = |\mathbf{A} \times \mathbf{B}|$ (if $0 < \theta \le 90^{\circ}$). For $90^{\circ} < \theta < 180^{\circ}$ we put $\mathbf{A} \mapsto -\mathbf{A}$ to get the same result.

Exercise 1.11: Show that $\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C})$ is not equal to $\mathbf{B} \cdot (\mathbf{A} \times \mathbf{C})$.

Solution:

$$
\begin{cases}\n\mathbf{A} = (1, 0, 0) \\
\mathbf{B} = (1, -1, 0) \\
\mathbf{C} = (0, 0, 1)\n\end{cases}
$$

We get from $(1.7.1)$ (and from Example $(1.7.1)$): 1 0 0 1 −1 0 0 0 1 $=-1 \neq +1 =$ 1 −1 1 0 \vert = 1 −1 0 1 0 0 0 0 1

Exercise 1.12: Three vectors A, B and C represent three concurrent edges of a parallelepiped. Show that the volume of the parallelepiped is equal to $|\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C})|$.

Solution:

Let us assume that vectors **B** and **C** are in the xy-plane so that $\mathbf{B} \times \mathbf{C}$ is in the positive z-direction (as in the picture). Let θ be the angle between **A** and $\mathbf{B} + \mathbf{C}$ (which is in the xy-plane also).

The height of the parallelepiped is $h = |A| \sin \theta$. The volume is thus $V = |\mathbf{B} \times \mathbf{C}| \cdot |\mathbf{A}| \sin \theta = |\mathbf{B} \times \mathbf{C}| \cdot |\mathbf{A}| \cos(\frac{\pi}{2} - \theta) = |\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C})|$ for $0 < \theta \leq 90^{\circ}$. For $90^{\circ} < \theta < 180^{\circ}$ we put $A \mapsto -A$ to get the same result. Also, if $\mathbf{B} \times \mathbf{C}$ is in the negative z-direction, we put $\mathbf{B} \times \mathbf{C} \mapsto -(\mathbf{B} \times \mathbf{C})$ to again get the same result, since the absolute value of the dot product does not change.

Exercise 1.13: Verify the transformation matrix for a rotation about the z-axis through an angle ϕ followed by a rotation about the y'-axis through an angle θ , as given in Example 1.8.2.

Solution:

From (1.8.5) we calculate the transformation matrix for situation (1):

$$
\begin{pmatrix}\n\mathbf{i} \cdot \mathbf{i}' & \mathbf{j} \cdot \mathbf{i}' & \mathbf{k} \cdot \mathbf{i}' \\
\mathbf{i} \cdot \mathbf{j}' & \mathbf{j} \cdot \mathbf{j}' & \mathbf{k} \cdot \mathbf{j}' \\
\mathbf{i} \cdot \mathbf{k}' & \mathbf{j} \cdot \mathbf{k}' & \mathbf{k} \cdot \mathbf{k}'\n\end{pmatrix} = \begin{pmatrix}\n|\mathbf{i}| \cdot |\mathbf{i}'| \cos \phi & \cos \left(\frac{\pi}{2} - \phi\right) & \cos \frac{\pi}{2} \\
\cos \left(\frac{\pi}{2} + \phi\right) & \cos \phi & \cos \frac{\pi}{2} \\
\cos \frac{\pi}{2} & \cos \frac{\pi}{2} & \cos 0\n\end{pmatrix}
$$
\n
$$
= \begin{pmatrix}\n\cos \phi & \sin \phi & 0 \\
-\sin \phi & \cos \phi & 0 \\
0 & 0 & 1\n\end{pmatrix}
$$

For situation (2):

$$
\begin{pmatrix}\n\mathbf{i}' \cdot \mathbf{i}'' & \mathbf{j}' \cdot \mathbf{i}'' & \mathbf{k}' \cdot \mathbf{i}'' \\
\mathbf{i}' \cdot \mathbf{j}'' & \mathbf{j}' \cdot \mathbf{j}'' & \mathbf{k}' \cdot \mathbf{j}'' \\
\mathbf{i}' \cdot \mathbf{k}'' & \mathbf{j}' \cdot \mathbf{k}'' & \mathbf{k}' \cdot \mathbf{k}''\n\end{pmatrix} = \begin{pmatrix}\n\left|\mathbf{i}'\right| \cdot \left|\mathbf{i}''\right| \cos \theta & \cos \frac{\pi}{2} & \cos \left(\frac{\pi}{2} + \theta\right) \\
\cos \frac{\pi}{2} & \cos \theta & \cos \frac{\pi}{2} \\
\cos \left(\frac{\pi}{2} - \theta\right) & \cos \frac{\pi}{2} & \cos \theta\n\end{pmatrix}
$$
\n
$$
= \begin{pmatrix}\n\cos \theta & 0 & -\sin \theta \\
0 & 1 & 0 \\
\sin \theta & 0 & \cos \theta\n\end{pmatrix}
$$

The full transformation matrix is thus:

$$
\begin{pmatrix}\n\cos\theta & 0 & -\sin\theta \\
0 & 1 & 0 \\
\sin\theta & 0 & \cos\theta\n\end{pmatrix}\n\begin{pmatrix}\n\cos\phi & \sin\phi & 0 \\
-\sin\phi & \cos\phi & 0 \\
0 & 0 & 1\n\end{pmatrix} = \begin{pmatrix}\n\cos\theta\cos\phi & \cos\theta\sin\phi & -\sin\theta \\
-\sin\phi & \cos\phi & 0 \\
\sin\theta\cos\phi & \sin\theta\sin\phi & \cos\theta\n\end{pmatrix},
$$

which is the same as in (1.8.6).

Exercise 1.14: Express the vector $2i + 3j - k$ in the primed triad $i'j'k'$ in which the $x'y'$ -axes are rotated about the z-axis (which coincides with the z' -axis) through an angle of 30°.

Solution:

We use formula (1.8.5) and (for example) exercise 1.13:

$$
\begin{pmatrix} A_{x'} \ A_{y'} \ A_{z'} \end{pmatrix} = \begin{pmatrix} \cos 30^{\circ} & \sin 30^{\circ} & 0 \\ -\sin 30^{\circ} & \cos 30^{\circ} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}
$$

$$
= \begin{pmatrix} \sqrt{3} + \frac{3}{2} + 0 \\ -1 + \frac{3\sqrt{3}}{2} + 0 \\ -1 \end{pmatrix}
$$

$$
= (\sqrt{3} + \frac{3}{2})\mathbf{i}' + (-1 + \frac{3\sqrt{3}}{2})\mathbf{j}' - \mathbf{k}'.
$$

Exercise 1.15: Consider two Cartesian coordinate systems xyz and $x'y'z'$ that initially coincide. The $x'y'z'$ undergoes three successive counterclockwise 45° rotations about the following axes: first, about the fixed *z*-axis; second, about its own x' -axis (which has now been rotated); finally, about its own z' -axis (which has also been rotated). Find the components of a unit vector X in the xyz coordinate system that points along the direction of the x'-axis in the rotated $x'y'z'$ system. (Hint. It would be useful to find three transformation matrices that depict each of the above rotations. The resulting transformation matrix is simply their product.)

Solution:

For the first rotation, we get:

$$
\begin{pmatrix}\n\cos 45^\circ & \sin 45^\circ & 0 \\
-\sin 45^\circ & \cos 45^\circ & 0 \\
0 & 0 & 1\n\end{pmatrix} = \begin{pmatrix}\n\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \\
-\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \\
0 & 0 & 1\n\end{pmatrix}
$$

For the second rotation, we get:

$$
\begin{pmatrix}\n\cos 0 & \cos \frac{\pi}{2} & \cos \frac{\pi}{2} \\
\cos \frac{\pi}{2} & \cos 45^{\circ} & \cos (90^{\circ} + 45^{\circ}) \\
\cos \frac{\pi}{2} & \cos (90^{\circ} - 45^{\circ}) & \cos 45^{\circ}\n\end{pmatrix} = \begin{pmatrix}\n1 & 0 & 0 \\
0 & \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\
0 & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}\n\end{pmatrix}
$$

For the third rotation, we get:

$$
\begin{pmatrix}\n\cos 45^\circ & \sin 45^\circ & 0 \\
-\sin 45^\circ & \cos 45^\circ & 0 \\
0 & 0 & 1\n\end{pmatrix} = \begin{pmatrix}\n\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \\
-\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \\
0 & 0 & 1\n\end{pmatrix}
$$

The full transformation matrix R is thus:

$$
R = \begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ 0 & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} \begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} - \frac{\sqrt{2}}{4} & \frac{1}{2} + \frac{\sqrt{2}}{4} & -\frac{1}{2} \\ -\frac{1}{2} - \frac{\sqrt{2}}{4} & -\frac{1}{2} + \frac{\sqrt{2}}{4} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} & \frac{\sqrt{2}}{2} \end{pmatrix}
$$

Now $\mathbf{X}' = R\mathbf{X}, \mathbf{X} = (x, y, z), \mathbf{X}' = (1, 0, 0)$ and we must have $|\mathbf{X}| = 1$.

$$
\begin{cases}\n(1 - \frac{\sqrt{2}}{2})x + (1 + \frac{\sqrt{2}}{2})y - z = 2 \\
(-1 - \frac{\sqrt{2}}{2})x + (-1 + \frac{\sqrt{2}}{2})y - z = 0 \\
-x + y + \sqrt{2}z = 0\n\end{cases}
$$

Solving this set of linear equations we get:

$$
\begin{cases}\n x = \frac{1}{2} - \frac{\sqrt{2}}{4} \\
 y = \frac{1}{2} + \frac{\sqrt{2}}{4} \\
 z = -\frac{1}{2}\n\end{cases}
$$

The norm of **X** is now $|\mathbf{X}| = \sqrt{(\frac{1}{2} - \frac{1}{2})^2}$ $\overline{\sqrt{2}}$ $\frac{\sqrt{2}}{4}$)² + ($\frac{1}{2}$ + $\overline{\sqrt{2}}$ $\frac{\sqrt{2}}{4}$)² + $\frac{1}{4}$ = 1. The final answer is $\mathbf{X} = (\frac{1}{2} \sqrt{2}$ $\frac{\sqrt{2}}{4}$)**i** + ($\frac{1}{2}$ + √ 2 $\frac{\sqrt{2}}{4}$)j $-\frac{1}{2}$ $rac{1}{2}$ **k**.

Exercise 1.16: A racing car moves on a circle of constant radius b. If the speed of the car varies with time t according to the equation $v = ct$, where c is a positive constant, show that the angle between the velocity vector and the acceleration vector is 45° at time $t=\sqrt{\frac{b}{c}}$ $\frac{b}{c}$. (Hint. At this time the tangential and normal components of the acceleration are equal in magnitude.)

Solution:

See figure 1.11.1 for polar coordinates.

$$
\mathbf{v}(t) = ct\mathbf{e}_{\theta},
$$

$$
\mathbf{a}(t) = \frac{d\mathbf{v}(t)}{dt} = c\mathbf{e}_{\theta} + ct\frac{d\mathbf{e}_{\theta}}{dt} = c\mathbf{e}_{\theta} - ct\frac{d\theta}{dt}\mathbf{e}_{r}.
$$

Let ϕ be the angle between **v** and **a** at time $t = \sqrt{\frac{b}{c}}$ $\frac{b}{c}$. We must show that $\phi = 45^{\circ} = \frac{\pi}{4}$ $\frac{\pi}{4}$.

$$
\cos \phi = \frac{\mathbf{v}(\sqrt{\frac{b}{c}}) \cdot \mathbf{a}(\sqrt{\frac{b}{c}})}{|\mathbf{v}(\sqrt{\frac{b}{c}})||\mathbf{a}(\sqrt{\frac{b}{c}})|}
$$

$$
\mathbf{v}(\sqrt{\frac{b}{c}}) = c\sqrt{\frac{b}{c}}\mathbf{e}_{\theta} \Rightarrow |\mathbf{v}(\sqrt{\frac{b}{c}})| = \sqrt{bc},
$$

$$
\mathbf{a}(\sqrt{\frac{b}{c}}) = c\mathbf{e}_{\theta} - c\sqrt{\frac{b}{c}}\frac{d\theta}{dt}\mathbf{e}_r \Rightarrow |\mathbf{a}(\sqrt{\frac{b}{c}})| = \sqrt{c^2 + bc(\frac{d\theta}{dt})^2} = \sqrt{c^2 + c^2} = c\sqrt{2} \ \ (c > 0).
$$

Thus we get:

$$
\cos \phi = \frac{c^2 \cdot \sqrt{\frac{b}{c}}}{c\sqrt{2} \cdot \sqrt{bc}} = \frac{1}{\sqrt{2}} \cdot \sqrt{\frac{bc}{bc}} = \frac{1}{\sqrt{2}} \Rightarrow \phi = 45^\circ.
$$