Analytical Mechanics

Exercises 1.9-1.16

(Exercise descriptions [with possible slight modifications| from Analytical
Mechanics by Fowles and Cassiday, 7th International Student Edition.
Solutions by: Waves and Tensors)



Exercise 1.9: Prove the vector identity
Ax(BxC)=B(A-C)—C(A-B).

Solution:

According to (1.5.1):

B xC=(B,C, -B.C,B.C, — B,C,,B,C, — B,C,)
Thus:

Ax(BxC) = (A4/(B.,C, - B,C,) — A(B.C, — B,C%),

A.(B,C. — B.C,) — A,(B,Cy, — B,C,),
A.(B.C, — B,C.) — A,(B,C. — B.C,))

= (4,B,C,—A,B,C, —A,B.C, — A,B,C,,
A.B,C.,—A.B.C,— A, B,Cy— A, B,C,,
A,B.C, — A,B,C, — A,B,C. — A,B.C,)

= ((4,C,+A,C,+ AC,)B, — (A,B, + AyB, + A.B,)C,,
(A, C, +A,Cy+ A.C.)B, — (A,B, + AyB, + A.B.)C,,
(A,C, + A,C, + A.C.)B, — (A, B, + A,B, + A.B.)C.)

- (A-C)B-(A-B)C

= B(A-C)-C(A:-B).



Exercise 1.10: Two vectors A and B represent concurrent sides of a
parallelogram. Show that the area of the parallelogram is equal to |A x B].

Solution:

The area of the parallelogram is A = |A| - h. For the situation in the
picture: h = |B|sinf, where § = Z(A,B). Thus A = |A||B|sinf = |A x B|
(if 0 < 8 <90°). For 90° < 6 < 180° we put A — —A to get the same
result.



Exercise 1.11: Show that A - (B x C) is not equal to B - (A x C).

Solution:
A = (1,0,0)
B=(1,-1,0)
C =(0,0,1)
We get from (1.7.1) (and from Example (1.7.1)):
10 0 TR T B
1 -1 0:—17A+1='1 0‘: 1 0 0
0 0 1 0 0 1



Exercise 1.12: Three vectors A, B and C represent three concurrent
edges of a parallelepiped. Show that the volume of the parallelepiped is
equal to |A - (B x C)|.

Solution:

Let us assume that vectors B and C are in the xy-plane so that B x C is in
the positive z-direction (as in the picture). Let 6 be the angle between A
and B 4+ C (which is in the zy-plane also).

The height of the parallelepiped is h = |A|sin . The volume is thus

V =IBxC|-[Alsinf = [BxC|-[A|cos(5 —0)=|A-(BxC)|for

0 <6 <90° For 90° < 6 < 180° we put A — —A to get the same result.
Also, if B x C is in the negative z-direction, we put B x C+— —(B x C) to
again get the same result, since the absolute value of the dot product does
not change.



Exercise 1.13: Verify the transformation matrix for a rotation about the
z-axis through an angle ¢ followed by a rotation about the g/-axis through
an angle #, as given in Example 1.8.2.

Solution:

From (1.8.5) we calculate the transformation matrix for situation (1):

i-if ji ki lil - [i'|cos ¢ cos (5 —¢) cos%
i-j i kj| = |cos(5+09) cos ¢ cos 5
ik j kK k-K cos 5 cos § cos0

cos¢p sing 0

= —sing cos¢p 0

0 0 1



For situation (2):

i’ i K- |i'] - [i"| cos@ cos
! *// o/ ./ / o/

i-j 33 kK-j = oS cos ()
s/ " s/ " / " s s

ik kK K-k cos (5 —0) cosy

cos@ 0 —sinf
= 0 1 0
sinf 0 cos@

The full transformation matrix is thus:

cosf# 0 —sinf cos¢ sing 0 cos f cos ¢
0 1 0 —sing cos¢p 0] = —sin ¢
sinf 0 cosf 0 0 1 sin 6 cos ¢

which is the same as in (1.8.6).

cos (5 +0)
cos%
cos

cos fsin ¢
cos ¢
sin  sin ¢

—sinf
0
cos



Exercise 1.14: Express the vector 2i + 3j — k in the primed triad i'j’k’ in
which the x'y/-axes are rotated about the z-axis (which coincides with the
z'-axis) through an angle of 30°.

Solution:

We use formula (1.8.5) and (for example) exercise 1.13:

Ay cos30°  sin30° 0\ /2 BoLoo\ /2
Ay | = | —sin30° cos30° 0 3 = | -1 \/75 0 3
A, 0 0 1 —1 0O 0 1 —1
V3+3+40
= | —1+38 40
~1



Exercise 1.15: Consider two Cartesian coordinate systems zyz and z'y’2’
that initially coincide. The x'y’z" undergoes three successive
counterclockwise 45° rotations about the following axes: first, about the
fixed z-axis; second, about its own z’-axis (which has now been rotated);
finally, about its own z’-axis (which has also been rotated). Find the
components of a unit vector X in the zyz coordinate system that points
along the direction of the 2’-axis in the rotated z'y’z" system. (Hint. It
would be useful to find three transformation matrices that depict each of the
above rotations. The resulting transformation matriz is simply their
product.)

Solution:

For the first rotation, we get:

cos45°  sind5° 0 2 2
—sin45° cos45° 0| = _72 \/75 0
0 0 1 0 0 1
For the second rotation, we get:
cos () cos 5 cos % 10 0
cos 5 cos 45° cos (90°+45°) | = | 0 ‘/75 —g
cos I cos (90° — 45°) cos 45° 0 L2 L
For the third rotation, we get:
cos45°  sin4d5° 0 \/75 \/75 0
—sind5° cosd5® 0| = |2 L2
0 0 1 0 0 1
The full transformation matrix R is thus:
BB 0\ 10 0N f By (Lo e
R=|_v2 2 g0 ¥ 2| [|_¥2 &2 o|=|-1_-+¥2 1,2
2 2 2 2 2 2 2 4 2 4
o 0 1/ \o 2 £ 0 0 1 -1 1

Now X' = RX, X = (z,9,2),X = (1,0,0) and we must have |X| = 1.

(1—‘/75)x+(1—|—‘/7§)y—z:2
(—1—§)x+(—1+%§)y—z
—x+y+\/§z:0

9

=0

I
=N

v



Solving this set of linear equations we get:

L_ V2
13—2 \4[
_ 1 2
y=3t°1

1
F =73

The norm of X is now ]X|:\/(%— 2)2 4+ (3 4+ ¥2)?+ 1 = 1. The final

answer is X = (5 — \/Ti)i + (3 + )i -

10



Exercise 1.16: A racing car moves on a circle of constant radius b. If the
speed of the car varies with time t according to the equation v = ct, where ¢
is a positive constant, show that the angle between the velocity vector and

the acceleration vector is 45° at time ¢ = \/% (Hint. At this time the

tangential and normal components of the acceleration are equal in
magnitude.)

Solution:
See figure 1.11.1 for polar coordinates.

v(t) = ctey,
at) = d‘;gt) = ceg + ct%@ = cey — ctfl—fer.

Let ¢ be the angle between v and a at time t = \/é We must show that
¢ =45 = 7.

cos ¢ =

(
vy Dllaly/)]
vy = ey fley = vty /11 = Vi,

b bdb b db
a(4/-) =ceg—cy/-—e, = |a(\/t)| =/ 4be(==) =V +E=cV2 (¢>0).
c cdt c dt
Thus we get:
e 1 e 1
cos ¢ = ° —- —C:—:>gz5:45°.

V2 Ve V2 Vbe 2

11



