Analytical Mechanics

Exercises 1.25-1.30

(Exercise descriptions [with possible slight modifications| from Analytical
Mechanics by Fowles and Cassiday, 7th International Student Edition.
Solutions by: Waves and Tensors)



Exercise 1.25: Show that the tangential component of the acceleration of

a moving particle is given by the expression
and the normal component is therefore
an = (a? — a2)% = [a? — 52,

Solution:

The acceleration a = a,, + a, and according to the book (page 32),
v-a, =0 and v-a, = va, cos0° = va,. Thus:

v-a=v-a,+v-a =0+va, =a, =72

Because a,, 1 a, we get:

a’=a-a=(a,+a,;) (a, +a;)=a; +2a, a, +a} =a,+a;
)
2

= a, = +(a® —a2)z = [a? — (v:ﬂ]%.



Exercise 1.26: Use the above result to find the tangential and normal
components of the acceleration as functions of time in Exercises 1.18 and

1.19.

Solution:

For Exercise 1.18:

r(t) = ibsinwt + jbcos wt + ket?,
v(t) = iwb cos wt — jwbsinwt + k2ct,

a(t) = —iw?bsinwt — jw?bcoswt + k2c.

v-a —b?w? coswt sin wt + b?w? cos wt sin wt + 4c*t
a, =
v (b2w? cos? wt + b2w? sin® wt + 4¢2t2)2
4c*t

[b2w? + 4c2t2)2

16¢*t>
an = (a* — af)% [b*w? sin® wt + b*w* cos® wt + 4¢c* — ]%

For Exercise 1.19:

b2w? + 4c2t?
(bPwt + 4c2) (D*w? + 4c*t?) — 1612
b2w? + 4c%t?
biwb + 42b2wt? + 4c2b?w? + 16¢4? — 1642
b2w? + 4c2t2

b2w* + 4c2w?t? + 4Ac?
b2w? + 422 ]

24 4—62
b2w? + 4c%t?
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N =

bwlw ]%

v(t) = bkeMe, + beeMey,
a(t) = (k* — )beMe, + 2bckerle,.

bker - (k? — ?)beM + 2b%c2ke?kt b (k% — ke + 2b% 2 ke?kt
ar = 1 = 1
(b2k2e2kt 4 h2c2e2kt)3 (k2 + ¢2)3bekt
- k2 — 422
(2 + )}

= bkeM[k? + CQ]%,



Qn

[(k2 . 62)26262kt AR K2R b2k2€2kt(k2 + 62)]%
be (k2 — ) + 42K — (K* + Ak

et [k* — 2k%C% + ¢ + 4cPk? — K — K2z

beeM [k + 02]%.



Exercise 1.27: Prove that |v x a| = v®/p, where p is the radius of
curvature of the path of a moving particle.

Solution:

For the curve S we have r = p = constant = 7 = # = (. From equations
(1.11.7) and (1.11.9) we have (positive z-axis out of paper towards the
viewer):

v=re,+ r@eg

a= (i —r6?)e, + (rf + 2)ey

Thus:

vxa = (rfeyx (—r6?)e,) + (rfey x roey)
= r20%(e, x €) + 0
= 1?0,
= |v x a| = p?0% (%)
Now we see that v = pley = v = pf = 6 = - Plugging into (*) we get

lvxa| =2
P



Exercise 1.28: A wheel of radius b rolls along the ground with constant
forward acceleration ag. Show that, at any given instant, the magnitude of
the acceleration of any point on the wheel is (a2 4 v*/b?)2 relative to the
center of the wheel and is also ag[2 + 2 cos 6 + v*/a2b® — (20%/agb) sin 0]2
relative to the ground. Here v is the instantaneous forward speed, and 6
defines the location of the point on the wheel, measured forward from the
highest point. Which point has the greatest acceleration relative to the
ground?

Solution:

r; = (b97 b)
ry = (bsind, bcos0)

With respect to point A, we calculate |£s]:

Ty = (b0 cos ), —b@: sind) '
o = (bl cos — bO? sin O, —bf sin § — bH? cos )

We know that for § = 0 we have v =1, = (b6, 0) so v = bf and thus
ag = v = bf. We get:

2 . . 2
Y sin 6, —agsin @ — 4 cos )

fo = (agcosf — -



Finally:

. U2 . 2 . UQ 2 1
Ty = [(QOCOSQ—?SIDQ) —i—(—aosmﬁ—?cose) ]2
202 4 22 4
= [aicos®d — UaOcos@sinQ—f—%SiHQQ—i—agsinQG—i— UaOcosHsin@—l—Z—QcosQ@]%
1
Vi1
= a5+ 31
b2

With respect to point B, we calculate:

. 02 02
r=r;+ry=71=1 +¥ = (b0,0) + iy = (ap + agcosf — ?sinﬁ, —agpsinf — ?COSG)
Thus we get the acceleration at point P relative to point B as:

2 2

¥ = [(ap+ agcosf — % sin0)? + (—agsin 6 — % cos 0)2]2
2 2 2 2 2
= [ag(1 + cos)* — vbao (14 cos)sind + % sin? 0 + ag sin® 0 + vbao cos 0 sin 6

1}2 1
+ —cos?f)2

b
4 2 2
= a2+2a20080+a200826+v—— UaOsinH—l—azsinz@%
0 0 0 b2 b 0
vt 202 1
= 2+ 2cosf + ——= — —sinf|z.
aol agb®  agb inf]

To find the maximum of this last acceleration, we have to find the
. . 2 .
maximum of function f(¢) = cosf — = sin6 for 0 < § < oco.

02
f'(0) = —sinf — abcosﬂ
2

1" _ U_ —
17(0) = cos@—l—aobsm@— f(6)

The derivative is zero when:
f'(0) =0=sinb, = —;%b cosb, = 0, = arctan(—;%b) +nm, neN

Arctan goes from —75 to § . Thus =% <0y < 0= 7 <0; <. For 0;:
cosfy <0 and sinf; > 0 and so f(6#,) <0 and f”(#;) > 0. Thus 6, is a
minimum. Due to the periodicity (period is < 27) of f, acceleration reaches
a maximum when 6,, = arctan (—;’%b) +2nm, neN\{0}.



Exercise 1.29: What is the value of 2 (€ R) that makes of following
transformation R orthogonal?

z 0
R=|-2 2 0
01

What transformation is represented by an orthogonal R?

Solution:
. xr x 0 xr —x 0 2¢2 0 0 .
RR=|—-2z z 0 xr x 0]l=10 222 0] =RR
0 01 0 0 1 0 0 1

2t2 0 0 1 00 ]
0 222 0]l=1010)le2=1r=+—.
0 0 1 00 1 V2
1.
Forx—ﬁ.
\/Li \% 0 cos45°  sin4h5° 0
R = —J% %@ 0| = | —sin45° cos45° 0],
0 0 1 0 0 1

which is a 45° counter-clockwise rotation about the z-axis.

N
For =z = — 7
1 1 O o : o
-5 T cos (—135°)  sin(—135°) 0
R = \/Li —% 0] = | —sin(=135°) cos(—135°) 0|,
0 0 1 0 0 1

which is a 135° clockwise rotation about the z-axis.



Exercise 1.30: Use vector algebra to derive the following trigonometric
identities

(a) cos (0 — ¢) = cos O cos ¢ + sin O sin ¢,

(b) sin (f — ¢) = sinf cos ¢ — cos O sin ¢.

Solution:

We know that a rotation with respect to z-axis counter-clockwise by an
angle 6 — ¢ is given by the transformation matrix R.(0 — ¢) = R,(0)R.(—¢):

cos(0 —¢) sin(@—¢) O cosf sinf 0O cos¢p —sing 0
—sin(@ —¢) cos(@—¢) 0] = | —sinfd cosf 0 sing cos¢ 0
0 0 1 0 0 1 0 0 1

cosfcosp+sinfsing sinfcos¢p —cosfsing 0
= —sinfcos¢ + coslsing cosfcosp+sinflsing 0

0 0

(a) (*) = cos (0 — ¢) = cos B cos ¢ + sin f sin ¢.

(b) (*) = sin (0 — ¢) = sin 6 cos ¢ — cos O sin .

1

(*)



